Approximate real polynomial division via approximate inversion of real triangular Toeplitz matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate inverse-free preconditioners for Toeplitz matrices

In this paper, we propose approximate inverse-free preconditioners for solving Toeplitz systems. The preconditioners are constructed based on the famous Gohberg-Sememcul formula. We show that if a Toepltiz matrix is generated by a positive bounded function and its entries enjoys the off-diagonal decay property, then the eigenvalues of the preconditioned matrix are clustered around one. Experime...

متن کامل

Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations

A fast approximate inversion method is proposed for the block lower triangular Toeplitz with tri-diagonal blocks (BL3TB) matrix. The BL3TB matrix is approximated by a block ε-circulant matrix, which can be efficiently inverted using the fast Fourier transforms. The error estimation is given to show the high accuracy of the approximation. In applications, the proposed method is employed to solve...

متن کامل

Scaling Bini’s Algorithm for Fast Inversion of Triangular Toeplitz Matrices∗

In this paper, motivated by Lin, Ching and Ng [Theoretical Computer Science, 315:511523 (2004)], a scaling version of Bini’s algorithm [SIAM J. Comput., 13:268-276 (1984)] for an approximate inversion of a triangular Toeplitz matrix is proposed. The scaling algorithm introduces a new scale parameter and is mathematically equivalent to the original Bini’s. Its computational cost is about two fas...

متن کامل

Extreme eigenvalues of real symmetric Toeplitz matrices

We exploit the even and odd spectrum of real symmetric Toeplitz matrices for the computation of their extreme eigenvalues, which are obtained as the solutions of spectral, or secular, equations. We also present a concise convergence analysis for a method to solve these spectral equations, along with an efficient stopping rule, an error analysis, and extensive numerical results.

متن کامل

Involution Matrices of Real Quaternions

An involution or anti-involution is a self-inverse linear mapping. In this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. Moreover, properties and geometrical meanings of these matrices will be given as reflections in R^3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 1999

ISSN: 0893-9659

DOI: 10.1016/s0893-9659(98)00162-1